Difference between revisions of "How to Use MPI"

From HPC Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
|Options || Function
 
|Options || Function
 
|-
 
|-
| -g || enable debug mode
+
| -g || enable debugging information
 
|-  
 
|-  
| -O || enable compiler optimization
+
| -OX || enable compiler optimization, where <code>X</code> represents the optimization level and is one of (0, 1, 2, 3)
 
|-
 
|-
| -v || print compiler version
+
| -v || print the compiler version
 
|}
 
|}
  

Revision as of 13:12, 13 April 2018

Basics

This page will give you a general overview of how to compile and execute a program that has been parallelized with MPI. Many of the options listed below are the same for both Open MPI and Intel MPI, however, be careful if they do differentiate.

How to Compile MPI Code

Before continuing, please make sure that the openmpi or intelmpi module is loaded (go here to see how to load/switch modules).

There are several so called MPI "compiler wrappers", e.g. mpicc. These take care of including the correct MPI libraries for the programming language you are using. But they share most command line options. Depending on whether your code is written in C, C++ or Fortran, follow the instructions in one of the tables below. Make sure to replace the arguments inside <…> with specific values.

Open MPI

Use the following command to specify the program you would like to compile (replace <src_file> with a path to your code, e. g. ./myprog.c).

Language Command
C $ mpicc <src_file> -o <name_of_executable>
C++ $ mpicxx <src_file> -o <name_of_executable>
Fortran $ mpifort <src_file> -o <name_of_executable>

You can also type the command $ mpicc [options], $ mpicxx [options] or $ mpifort [options]. There are a few options that come with Open MPI, however, options are more important for running your program. The compiler options might be useful to fetch more information about the Open MPI module you are using. Compile options unknown to the MPI compiler wrapper are simply forwarded to the underlying compiler e.g. icc.

Options Function
-showme:help print a short help message about the usage and lists all compiler options
-showme:version show Open MPI version

For RWTH cluster users: Instead of typing the compiler wrapper mpicc etc., you can simply put one of the environment variables $MPICC, $MPICXX or $MPIFC for Fortran codes. They are already set by the module system so that you do not have to worry about which compiler module to use.

Intel MPI

Use the following command to specify the program you would like to compile (replace <src_file> with a path to your code, e. g. ./myprog.c).

Compiler Driver C C++ Fortran
GCC $ mpicc <src_file> -o <name> $ mpicpc <src_file> -o <name> $ mpifort <src_file> -o <name>
Intel $ mpiicc <src_file> -o <name> $ mpiicpc <src_file> -o <name> $ mpiifort <src_file> -o <name>

You can also type the command $ mpicc [options] <src_file> -o <name> etc., where [options] can be replaced with one or more of the ones listed below. Intel MPI comes with rather advanced compiler options, that are mainly aimed at optimization and analyzing your code with the help of Intel tools.

Options Function
-g enable debugging information
-OX enable compiler optimization, where X represents the optimization level and is one of (0, 1, 2, 3)
-v print the compiler version

For RWTH cluster users: Instead of typing the compiler wrapper mpicc etc., you can simply put one of the environment variables $MPICC, $MPICXX or $MPIFC for Fortran codes. They are already set by the module system so that you do not have to worry about which compiler module to use.

How to Run an MPI Executable

Ensure that the correct MPI module is loaded (go here to see how to load/switch modules). Once again, the command line options slightly differ between Intel MPI and Open MPI. In order to start any MPI program, type the following command where <executable> specifies the path to your application:

$ mpirun -n <num_procs> [options] <executable>

Note that mpiexec and mpirun are synonymous in Open MPI, in Intel MPI it's mpiexec.hydra and mpirun.

Don’t forget to put the -np or -n option as explained below. All the other options listed below are not mandatory.

Open MPI

Option Function
-np <num_procs> or -n <num_procs> number of processes to run
-npersocket <num_procs> number of processes per socket
-npernode <num_procs> number of processes per node
-wdir <directory> change to directory specified before executing the program
-nw complete command when all MPI processes have been launched successfully
-path <path> look for executables in the directory specified
-q or -quiet suppress helpful messages
-output-filename <name> redirect output into the file <name>.<rank>
-x <env_variable> export the specified environment variable to the remote nodes where the program will be executed
--help list all options available with an explanation

Intel MPI

Option Function
-n <num_procs> number of processes to run
-ppn <num_procs> number of processes per node; for that to work, it may be necessary to set the environment variable I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=off
-wdir <directory> change to directory specified before executing the program
-path <path> look for executables in the directory specified
-outfile-pattern <name> redirect stdout to file
--help list all options available with an explanation

Process Binding in Open MPI

Binding processes means telling your system how to place the processes onto the architecture. This can be done by adding command-line options when calling mpiexec and may enhance the performance of your application. In order to learn more about that, go here.

References

Intel MPI compiler options

Manual page for Open MPI's mpiexec