
MPI in Small Bites THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking Point-to-Point Communication

MPI in Small Bites

HPC.NRW Competence Network

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Point-to-Point Communication

 The goal is to enable communication between processes that share no memory space

 Explicit message passing requires:

 Send and receive primitives (operations)

 Known addresses of both the sender and the receiver

 Specification of what has to be sent/received

TimeCommunicating

Partner A

TimeCommunicating

Partner B

Receive

explicit agreement

Send

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Sending Data

 Sending a message:

 data: location in memory of the data to be sent

 count: number of elements of type to be sent

 type: handle of the MPI datatype of the buffer content

 dest: rank of the receiver

 tag: additional identification of the message

ranges from 0 to MPI_TAG_UB (implementation dependant, but not less than 32767)

 comm: communication context (communicator handle)

int MPI_Send(void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

C

MPI_Send(data, count, type, dest, tag, comm, ierr) Fortran

To whom?What?

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Receiving Data

 Receiving a message:

 data: location of the receive buffer

 count: size of the receive buffer in data elements

 type: Handle of the MPI datatype of the data elements

 source: rank of the sender or MPI_ANY_SOURCE (wildcard)

 tag: message tag or MPI_ANY_TAG (wildcard)

 comm: communication context

 status: status of the receive operation or MPI_STATUS_IGNORE

int MPI_Recv(void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

C

MPI_Recv(data, count, type, src, tag, comm, status, ierr) Fortran

What? From whom?

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers

 Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data

 Whom to send data to / From whom to receive the data?

 How much data?

 What kind of data?

 Has the data arrived?

3. Provide synchronisation mechanisms

 Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes

 How do we start multiple processes and get them to work together?

5. Portability

Only local completion

information available.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Message Envelope and Matching

 Message matching is performed using the message envelope

 Send operation

 Receive operation

int MPI_Send (void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

int MPI_Recv (void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Sender Receiver

Source Implicit Explicit, wildcard possible (MPI_ANY_SOURCE)

Destination Explicit Implicit

Tag Explicit Explicit, wildcard possible (MPI_ANY_TAG)

Communicator Explicit Explicit

Message Envelope

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Message Envelope and Matching

 Correct reception of MPI messages is also dependent on the data type.

 Recall:

 Type signatures must match

 May not be verified by MPI library (source for unpredictable errors!)

 One send operation is matched with one receive operation

 Messages do not aggregate (no single receive for multiple sends)

 Messages do not separate (no multiple receives for a single send)

MPI_Send (void *data, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm)

MPI_Recv (void *data, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Message Size and Status Object

 The receive buffer must be able to fit the entire message

 send count ≤ receive count OK (check effective message length with status)

 send count > receive count ERROR (message truncation)

 Message size inquiry:

 Number of integral elements of type datatype in the message reference by status

 If message size not divisible by size of given datatype size: MPI_UNDEFINED

MPI_Get_count (MPI_Status *status, MPI_Datatype datatype, int *count)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Status Object Fields

 The MPI status object contains information about the message

INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status
…
status(MPI_SOURCE) ! message source rank
status(MPI_TAG) ! message tag
status(MPI_ERROR) ! receive status code

Fortran

MPI_Status status;
…
status.MPI_SOURCE // message source rank
status.MPI_TAG // message tag
status.MPI_ERROR // receive status code

C

TYPE(MPI_Status) :: status
…
status%MPI_SOURCE ! message source rank
status%MPI_TAG ! message tag
status%MPI_ERROR ! receive status code

Fortran 2008

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Checking for Message Availability (no threads)

 Checking for message:

 Do NOT use with multiple communicating threads (alternatives covered in a separate part)

 Message is not received, separate call to MPI_Recv needed

 Message envelope and size stored in status object

 Checks for any message in the given communicator (wildcards)

 Receive must use specific values from status to receive the inquired message

MPI_Probe (int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

MPI_Status status;

MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);
… allocate buffer based on message size …
MPI_Recv(buffer, size, MPI_INT, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD, &status);

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Checking for Message Availability (no threads)

 Checking for message:

 Do NOT use with multiple communicating threads (alternatives covered in a separate part)

 Message is not received, separate call to MPI_Recv needed

 Message envelope and size stored in status object

 Checks for any message in the given communicator (wildcards)

 Receive must use specific values from status to receive the inquired message

MPI_Probe (int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

MPI_Status status;

MPI_Probe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &status);
… allocate buffer based on message size …
MPI_Recv(buffer, size, MPI_INT, status.MPI_SOURCE, 0,

MPI_COMM_WORLD, &status);

Use envelope

data from status.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Operation Completion

 MPI operations complete locally once the message buffer is no longer in use by the MPI

library and is thus free for reuse

 Send operations complete:

 once the message is constructed and

 placed completely onto the network or

 buffered completely (by MPI, the OS, the network, …)

 Receive operations complete:

 once the entire message has arrived and has been placed into the buffer

 Blocking MPI procedures only return once the corresponding operation has completed

 MPI_Send and MPI_Recv are blocking

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking send (w/o buffering) and receive calls:

Program

Sender Receiver

Program

M
P

I_
R

e
c
v

M
P

I_
S

e
n
d

Data

must not

be used

Data

must

remain

constant
Intermediate message part

Last message part

First message part

Intermediate message part

Send the envelope and wait

Acknowledge envelope match

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Point-to-Point Send Modes

Call Semantics

Buffered / Asynchronous MPI_Bsend Uses extra (user-provided) buffer space to copy the message

buffer and returns to the user. Message transfer may happen

at a later point using the buffer.

Rendezvous / Synchronous MPI_Ssend Explicitly waits for the receiver to start the receive process

Standard MPI_Send May follow buffered (library-internal buffer) or synchronous

semantics depending on implementation, input, and/or runtime

situation

Ready MPI_Rsend Sender assumes the receive to be posted on remote process

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Point-to-Point Send Modes

Call Semantics

Buffered / Asynchronous MPI_Bsend Uses extra (user-provided) buffer space to copy the message

buffer and returns to the user. Message transfer may happen

at a later point using the buffer.

Rendezvous / Synchronous MPI_Ssend Explicitly waits for the receiver to start the receive process

Standard MPI_Send May follow buffered (library-internal buffer) or synchronous

semantics depending on implementation, input, and/or runtime

situation

Ready MPI_Rsend Sender assumes the receive to be posted on remote process

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlocks

 Both MPI_Send and MPI_Recv calls are blocking:

 Standard send operation has two (implementation specific) modes of operation:

 Buffering the message → Asynchronous completion

 Waiting for the receiver to start receiving → Synchronous completion

 Never rely on any implementation-specific behaviour!

 Deadlock in a common data exchange scenario:

TimeRank 0

TimeRank 1

Send to 1

Receive from 0

Receive from 1

Send to 0

Both ranks wait

for Receive to get

called

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Deadlocks

 Both MPI_Send and MPI_Recv calls are blocking:

 Standard send operation has two (implementation specific) modes of operation:

 Buffering the message → Asynchronous completion

 Waiting for the receiver to start receiving → Synchronous completion

 Never rely on any implementation-specific behaviour!

 Deadlock prevention in a common data exchange scenario:

TimeRank 0

TimeRank 1

Receive from 1

Receive from 0

Send to 1

Send to 0

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Combined Send and Receive

 Sends one message and receives one message (in any order) without deadlocking

(unless unmatched)

 Send and receive buffers must not overlap!

 Using the same memory location, elements count and datatype for both operations

 Often slower than MPI_Sendrecv

MPI_Sendrecv (void *senddata, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvdata, int recvcount,
MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

MPI_Sendrecv_replace (void *data, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

 Order is preserved for point-to-point operations

 in a given communicator

 between any pair of processes

 Probe/receive returns the earliest matching message

 Order is not guaranteed for

 Messages sent within different communicators

 Messages arriving from different senders

 Messages sent from different threads even with identical envelopes (logically concurrent)

Message Ordering

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking Point-to-Point Communication Summary

 Communication primitives for data exchange between two processes

 Blocking communication returns on local completion

 An operation is locally complete when arguments to MPI can be re-used / deallocated

 Message order guaranteed between two processes on the same communicator

 Different send modes exist to tweak communication pattern

 Use ‘standard’ send (MPI_Send) if unsure or unless another mode is explicitly needed

 Use other means than ‘buffered’ mode to avoid deadlock (avoid the extra copy)

 Combined send-receive calls

 Explicit communication patterns (may reduce maintainability and impact performance)

 Non-blocking communication (covered in another part)

