
SEVERAL WAYS TO SAXPY
Julia + CUDA.jl

Carsten Bauer, Marius Neumann

THE COMPETENCE NETWORK FOR HIGHPERFORMANCE COMPUTING IN NRW.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

AGENDA

– The SAXPY problem
– CUDA.jl

– CPU and GPU memory allocations
– memory transfer

– SAXPY with CUDA.jl
– GPU broadcasting (higher-order abstraction)
– GPU kernel (the manual way)
– CUBLAS (the library way)

– Summary

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

THE SAXPY PROBLEM

– linear combination of two float arrays
– results written to third array

a

a

a

x1

x2

...

xd

+

+

+

y1

y2

...

yd

=

=

=

a · x1 + y1

a · x2 + y2

...

a · xd + yd

A typical Julia code:

define constants
const dim = 100_000_000
const a = 3.1415

allocate vectors
x = ones(Float32, dim)
y = ones(Float32, dim)
z = zeros(Float32, dim)

perform SAXPY
z .= a .* x .+ y

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

CUDA.JL
https://github.com/JuliaGPU/CUDA.jl

Programming interface for working
with NVIDIA CUDA GPUs in Julia.

– high-level array abstractions
– tools for writing CUDA kernels
– wrappers for various CUDA libraries (e.g. cuFFT)

julia>] add CUDA

using CUDA
CUDA.versioninfo()

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

JULIA + CUDA.JL
memory allocation and transfer

– CPU memory (Array)

x_cpu = ones(Float32, dim)

– GPU memory (CuArray)

x_gpu = CUDA.ones(Float32, dim)

– type conversion triggers memory transfer

x_gpu = CuArray(x_cpu) # CPU -> GPU
x_cpu = Array(x_gpu) # GPU -> CPU

CPU

GPU

x_cpu

x_gpu

Array

CuArray

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SAXPY WITH CUDA.JL
GPU broadcasting

using CUDA

define constants
const dim = 100_000_000
const a = 3.1415

allocate vectors on the GPU
x = CUDA.ones(Float32, dim)
y = CUDA.ones(Float32, dim)
z = CUDA.zeros(Float32, dim)

perform SAXPY
CUDA.@sync z .= a .* x .+ y

– almost the same code as for the CPU

– vectors x, y, z are initialized as CuArrays
directly on the GPU

– CUDA.@sync make CPU wait until the GPU
finishes SAXPY (blocking)

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SAXPY WITH CUDA.JL
GPU kernel

define GPU kernel
function saxpy_gpu_kernel!(z,a,x,y)

i = (blockIdx().x - 1) * blockDim().x +
threadIdx().x

if i <= length(z)
@inbounds z[i] = a * x[i] + y[i]

end
return nothing

end

– z[i] = a * x[i] + y[i]
as if surrounded by implicit for-loop

– threadIdx().x, blockDim().x, blockIdx().x
built-in variables that identify the thread global index

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SAXPY WITH CUDA.JL
launching the kernel

using CUDA
[define GPU kernel, constants, and
allocate vectors on the GPU ...]

define GPU execution parameters
nthreads = CUDA.attribute(

device(),
CUDA.DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK

)
nblocks = cld(dim, nthreads)

CUDA.@sync @cuda(
threads=nthreads,
blocks=nblocks,
saxpy_gpu_kernel!(z,a,x,y)

)

– @cuda macro launches kernel on
the GPU with the given launch
configuration.

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SAXPY WITH CUDA.JL
CUBLAS

using CUDA
using CUDA.CUBLAS

define constants
const dim = 100_000_000
const a = 3.1415

allocate vectors on the GPU
x = CUDA.ones(Float32, dim)
y = CUDA.ones(Float32, dim)

perform SAXPY
(y is overwritten with the result)
CUDA.@sync CUBLAS.axpy!(dim, a, x, y)

– CUDA.jl provides low-level wrappers of the
vendor library CUBLAS.

– CUBLAS.axpy! for Float32 input directly
calls the cuBLAS function cublasSaxpy_v2.

– CUDA.@sync make CPU wait until the GPU
finishes SAXPY (blocking)

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SAXPY PERFORMANCE

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

SUMMARY

– Julia + CUDA.jl
– NVIDIA CUDA interface: higher-order abstractions, library wrappers

– SAXPY with CUDA.jl
– GPU broadcasting: CuArray moves computation to the GPU

– zeros(Float32, N) vs. CUDA.zeros(Float32, N)

– SAXPY: essentially the same code as for the CPU

– GPU kernel

– definition: blockIdx(), blockDim(), threadIdx()

– launching: CUDA.@sync @cuda threads=T blocks=B kernel()

– CUBLAS: CUDA.@sync CUBLAS.axpy!()

– transfer GPU result to CPU: result_cpu = Array(result_gpu)

– memory release: result_gpu = nothing; GC.gc(true)

– SAXPY performance on NVIDIA V100: 800 GB/s

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

	Introduction

