
SEVERAL WAYS TO SAXPY
CUDA C/C++

Marius Neumann, Christian Schmidt

THE COMPETENCE NETWORK FOR HIGH-PERFORMANCE COMPUTING IN NRW.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

WHAT IS CUDA C/C++?

“CUDA C++ extends C++ by allowing the programmer to define C++ functions, called
kernels, that, when called, are executed N times in parallel by N different CUDA threads,

as opposed to only once like regular C++ functions.”

NVIDIA, CUDA C++ Programming Guide

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

WHAT IS CUDA C/C++?

“CUDA C++ is C++ with GPU functionality.”

Marius, HPC.NRW GPU tutorials

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

THE NVIDIA COMPILER NVCC

– part of NVIDIA Toolkit
– can compile standard C/C++ code
– standard suffix ’.cu’

– docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc

Compiling and running:

$ nvcc -o gpu_code gpu_code.cu
$./gpu_code

Analogous to:

$ g++ -o cpu_only cpu_only.cpp
$./cpu_only

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
docs.nvidia.com/cuda/cuda-compiler-driver-nvcc
docs.nvidia.com/cuda/cuda-compiler-driver-nvcc

THE KERNEL FUNCTION

– data parallel function
– executed on the device
– called on the host

– new keywords and syntax
__global__ modifier defining a kernel function
<<<M,N>>> kernel launch syntax

Launching a kernel:

__global__ void my_kernel(){
doStuff();

}

int main(){
my_kernel<<<M,N>>>();

}

Threads

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

Block: N Threads

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

Grid: M Blocks

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

LAUNCHING A KERNEL FUNCTION

– <<<M,N>>> starts kernel on M blocks with N threads per block
– kernel launched MN times
– each thread identified by threadIdx.x and blockIdx.x

void my_function(){
for(int i=0; i<maxId; ++i){

doStuff(i);
}

}

int main(){
my_function();

}

__global__ void my_kernel(){
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i<maxId) doStuff(i);

}

int main(){
my_kernel<<<M,N>>>();

}

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

ALLOCATE MEMORY ON THE DEVICE

– data must be transferred to GPU
– memory allocation in GPU memory needed

cudaError_t cudaMalloc(void ** devPtr, size_t size)

– allocates memory on the device
– devPtr: Pointer to device memory
– size: allocation size in bytes
– returns error code cudaError_t

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

COPY DATA TO THE DEVICE

cudaError_t cudaMemcpy(void * dst, const void * src,
size_t count, enum cudaMemcpyKind kind)

– copies data between host and device
– dst/src: Pointer to destination/source, both may be host or device
– count: size in bytes to copy
– kind: type of transfer, e.g.: cudaMemcpyHostToDevice

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

WHY NOT BOTH?

cudaError_t cudaMallocManaged(void ** Ptr, size_t size)

– allocates memory on host and device
– automatic copying
– same syntax as cudaMalloc
– only available for Pascal architecture and later
– almost as fast as manual memory handling

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

THE SAXPY PROBLEM

– linear combination of two float arrays
– results written to third array

a

a

a

x1

x2

...

xd

+

+

+

y1

y2

...

yd

=

=

=

a · x1 + y1

a · x2 + y2

...

a · xd + yd

Typical C/C++ code:

int main(){
int N=6;
float a=3.1415;
float x[N]={1,2,3,4,5,6};
float y[N]={7,8,9,0,1,2};
float z[N];

for(int i=0; i<N; i++){
z[i]=a*x[i]+y[i];

}
}

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

THE CUDA C/C++ SAXPY

#include <cuda.h>
#define N 6

__global__ void saxpy_kernel(float a,
float* x, float* y, float* z){

int i = threadIdx.x;
z[i] = a*x[i]+y[i];

}

int main(){
float a = 3.1415;
float x[N] = {1,2,3,4,5,6};
float y[N] = {7,8,9,0,1,2};
float z[N];
float *d_x, *d_y, *d_z;

cudaMalloc(&d_x, N*sizeof(float));
cudaMalloc(&d_y, N*sizeof(float));
cudaMalloc(&d_z, N*sizeof(float));

cudaMemcpy(d_x, x, N*sizeof(float),
cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N*sizeof(float),
cudaMemcpyHostToDevice);

saxpy_kernel<<<1,N>>>(a, d_x, d_y, d_z);

cudaMemcpy(z, d_z, N*sizeof(float),
cudaMemcpyDeviceToHost);

}

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

TIMINGS: MODEL

101 102 103 104 105

Problem size [au]

101

102

103

104

105

Ti
m

e
[a

u]

schematic picture of SAXPY timings
CPU
GPU

– CPU
– linear

– GPU
– small N: constant
– large N: linear and fast

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

TIMINGS: REALITY

101 102 103 104 105 106 107 108

Array dim N

10 4

10 3

10 2

10 1

100

101

102

Ti
m

e
t m
s

SAXPY timing, volta
CPU
GPU

– CPU
– almost linear

– GPU
– small N: constant
– large N: linear and fast

– varies with system configuration

INNOVATION THROUGH COOPERATION.

https://creativecommons.org/licenses/by-sa/4.0/deed.en

