
Introduction to OpenMP THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

Dr. Christian Terboven

Introduction to OpenMP

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP

False Sharing

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Memory Bottleneck

− There is a growing gap between core and memory performance:
− memory, since 1980: 1.07x per year improvement in latency
− single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000, 1.20x per year until 2005,

then no change on a per-core basis

− Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012

Latency

SPECint benchmark
performance

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Caches

− CPU is fast
− Order of 3.0 GHz

− Caches:
− Fast, but expensive
− Thus small, order of MB

− Memory is slow
− Order of 0.3 GHz
− Large, order of GB

− A good utilization of caches is crucial for good
performance of HPC applications!

core

memory

off-chip cache

on-chip cache

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Visualization of the Memory Hierarchy

− Latency on the Intel Westmere-EP 3.06 GHz processor

0
2
4
6
8

10
12
14
16
18
20

1
B

4
B

16
 B

64
 B

25
6

B
1

KB
4

KB
16

 K
B

64
 K

B
25

6
KB

1
M

B
4

M
B

12
 M

B
32

 M
B

12
8

M
B

51
2

M
B

2
G

B

La
te

nc
y

in
 n

s

Memory Footprint

L1
 c

ac
he

L2
 c

ac
he

L3
 c

ac
he

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Data in Caches

− When data is used, it is copied into caches.

− The hardware always copies chunks into
the cache, so called cache-lines.

− This is useful, when:
− the data is used frequently (temporal locality)
− consecutive data is used which is on

the same cache-line (spatial locality)

Core

memory

on-chip cache

Core

on-chip cacheon-chip cache

bus

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing

− False Sharing occurs when
− different threads use elements of the same cache-line
− one of the threads writes to the cache-line

− As a result the cache line is moved
between the threads, although there
is no real data dependency

− Note: False Sharing is a performance problem,
not a correctness issue

Core

memory

on-chip cache

Core

on-chip cacheon-chip cache

bus

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Summing up vector elements again

do i = 0, 99
s = s +

a(i)
end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < 99; i++)
{

s = s + a[i];

}

} // end parallel

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing

1 double s_priv[nthreads];
2 #pragma omp parallel num_threads(nthreads)
3 {
4 int t=omp_get_thread_num();
5 #pragma omp for
6 for (i = 0; i < 99; i++)
7 {
8 s_priv[t] += a[i];
9 }

10 } // end parallel
11 for (i = 0; i < nthreads; i++)
12 {
13 s += s_priv[i];
14 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing

− No performance benefit for more threads!
− Reason: false sharing of s_priv
− Solution: padding so that only

one variable per cache line is used
0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

M
FL

O
PS

#threads

with false sharing

1 2 3 4 …
1 2 …3

Standard

With padding

cache line 1 cache line 2

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10 11 12

M
FL

O
PS

#threads

with false sharing without false sharing

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing avoided

1 double s_priv[nthreads * 8];
2 #pragma omp parallel num_threads(nthreads)
3 {
4 int t=omp_get_thread_num();
5 #pragma omp for
6 for (i = 0; i < 99; i++)
7 {
8 s_priv[t * 8] += a[i];
9 }

10 } // end parallel
11 for (i = 0; i < nthreads; i++)
12 {
13 s += s_priv[i * 8];
14 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Introduction to OpenMP

Example: PI

Dr. Christian Terboven

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }

What is
wrong with
this code?

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for private(fX,i) reduction(+:fSum)
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

What if we
had forgotten

this?

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for private(fX,i) reduction(+:fSum)
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Race Condition

− Data Race: the typical OpenMP programming error, when:
− two or more threads access the same memory location, and
− at least one of these accesses is a write, and
− the accesses are not protected by locks or critical regions, and
− the accesses are not synchronized, e.g. by a barrier.

− Non-deterministic occurrence: e.g. the sequence of the execution of parallel loop iterations
is non-deterministic and may change from run to run

− In many cases private clauses, barriers or critical regions are missing

− Data races are hard to find using a traditional debugger
− Use tools like Intel Inspector XE, ThreadSanitizer, Archer

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Inspector XE – Results

1

1

23

2
3

detected problems
filters
code location

The missing
reduction is
detected.

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for private(fX,i,fSum)
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }

What if we just
made the fSum
variable private?

fSum == 0
(no update to

global variable)

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Example: Pi Scalability

− Results for 𝒏𝒏 = 𝟐𝟐 ⋅ 𝟏𝟏𝟎𝟎𝟗𝟗:

− Scalability is good (for up to 8 threads):
− About 100% of the runtime has been parallelized.
− As there is just one parallel region, there is virtually no overhead introduced by the

parallelization.
− Problem is parallelizable in a trivial fashion ...

Threads Runtime [sec.] Speedup
1 1.141 1.00
2 0.575 1.96
4 0.298 3.93
8 0.161 7.08

System: CLAIX2018 Node (Intel Xeon 8160)
Compiler: Intel Compiler 19.0, Flags: –fopenmp –O3

Introduction to OpenMP INNOVATION THROUGH COOPERATION.

Questions?

	Introduction to OpenMP
	Introduction to OpenMP�
	Foliennummer 3
	Memory Bottleneck
	Caches
	Visualization of the Memory Hierarchy
	Data in Caches
	False Sharing
	Summing up vector elements again
	False Sharing
	False Sharing
	False Sharing avoided
	Foliennummer 13
	Introduction to OpenMP�
	Example: Pi
	Example: Pi
	Example: Pi
	Example: Pi
	Race Condition
	Inspector XE – Results
	Example: Pi
	Example: Pi Scalability
	Questions?

