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Memory Bottleneck

− There is a growing gap between core and memory performance:
− memory, since 1980: 1.07x per year improvement in latency
− single core: since 1980: 1.25x per year until 1986, 1.52x p. y. until 2000, 1.20x per year until 2005, 

then no change on a per-core basis

− Source: John L. Hennessy, Stanford University, and David A. Patterson, University of California, September 25, 2012 

Latency

SPECint benchmark 
performance
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Caches

− CPU is fast
− Order of 3.0 GHz

− Caches:
− Fast, but expensive
− Thus small, order of MB

− Memory is slow
− Order of 0.3 GHz
− Large, order of GB

− A good utilization of caches is crucial for good 
performance of HPC applications!

core

memory

off-chip cache

on-chip cache
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Visualization of the Memory Hierarchy

− Latency on the Intel Westmere-EP 3.06 GHz processor
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Data in Caches

− When data is used, it is copied into caches.

− The hardware always copies chunks into
the cache, so called cache-lines.

− This is useful, when:
− the data is used frequently (temporal locality)
− consecutive data is used which is on

the same cache-line (spatial locality)

Core

memory

on-chip cache

Core

on-chip cacheon-chip cache

bus



Introduction to OpenMP INNOVATION THROUGH COOPERATION.

False Sharing

− False Sharing occurs when
− different threads use elements of the same cache-line
− one of the threads writes to the cache-line

− As a result the cache line is moved
between the threads, although there 
is no real data dependency

− Note: False Sharing is a performance problem,
not a correctness issue
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Summing up vector elements again

do i = 0, 99
s = s + 

a(i)
end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do

#pragma omp parallel              
{

#pragma omp for
for (i = 0; i < 99; i++)
{   

s  = s + a[i];

}

} // end parallel
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False Sharing

1 double s_priv[nthreads];
2 #pragma omp parallel num_threads(nthreads)              
3 {
4 int t=omp_get_thread_num();
5 #pragma omp for
6 for (i = 0; i < 99; i++)
7 {
8 s_priv[t]  += a[i];
9 }

10 } // end parallel
11 for (i = 0; i < nthreads; i++)
12 {
13 s += s_priv[i];
14 }
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False Sharing

− No performance benefit for more threads!
− Reason: false sharing of s_priv
− Solution: padding so that only

one variable per cache line is used
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False Sharing avoided

1 double s_priv[nthreads * 8];
2 #pragma omp parallel num_threads(nthreads)              
3 {
4 int t=omp_get_thread_num();
5 #pragma omp for
6 for (i = 0; i < 99; i++)
7 {
8 s_priv[t * 8]  += a[i];
9 }

10 } // end parallel
11 for (i = 0; i < nthreads; i++)
12 {
13 s += s_priv[i * 8];
14 }
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Introduction to OpenMP

Example: PI

Dr. Christian Terboven
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Example: Pi

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }
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Example: Pi
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1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }

What is 
wrong with 
this code?
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Example: Pi
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1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for private(fX,i) reduction(+:fSum)
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }
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Example: Pi

𝜋𝜋 = �
0

1
4

1 + 𝑥𝑥2

What if we 
had forgotten 

this?

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for private(fX,i) reduction(+:fSum)
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }
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Race Condition

− Data Race: the typical OpenMP programming error, when:
− two or more threads access the same memory location, and
− at least one of these accesses is a write, and
− the accesses are not protected by locks or critical regions, and
− the accesses are not synchronized, e.g. by a barrier.

− Non-deterministic occurrence: e.g. the sequence of the execution of parallel loop iterations
is non-deterministic and may change from run to run

− In many cases private clauses, barriers or critical regions are missing

− Data races are hard to find using a traditional debugger
− Use tools like Intel Inspector XE, ThreadSanitizer, Archer
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Inspector XE – Results
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Example: Pi

1 double f(double x)
2 {
3 return (4.0 / (1.0 + x*x));
4 }
5
6 double CalcPi (int n)
7 {
8 const double fH = 1.0 / (double) n;
9 double fSum = 0.0;
10 double fX;
11 int i;
12
13 #pragma omp parallel for private(fX,i,fSum)
14 for (i = 0; i < n; i++)
15 {
16 fX = fH * ((double)i + 0.5);
17 fSum += f(fX);
18 }
19 return fH * fSum;
20 }

What if we just 
made the fSum
variable private?

fSum == 0
(no update to 

global variable)
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Example: Pi Scalability

− Results for 𝒏𝒏 = 𝟐𝟐 ⋅ 𝟏𝟏𝟎𝟎𝟗𝟗:

− Scalability is good (for up to 8 threads):
− About 100% of the runtime has been parallelized.
− As there is just one parallel region, there is virtually no overhead introduced by the 

parallelization.
− Problem is parallelizable in a trivial fashion ...

# Threads Runtime [sec.] Speedup
1 1.141 1.00
2 0.575 1.96
4 0.298 3.93
8 0.161 7.08

System: CLAIX2018 Node (Intel Xeon 8160)
Compiler: Intel Compiler 19.0, Flags: –fopenmp –O3
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Questions?
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