
MPI in Small Bites THE COMPETENCE NETWORK FOR HIGH PERFORMANCE COMPUTING IN NRW.

HPC.NRW Competence Network

MPI in Small Bites

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Concepts

MPI in Small Bites

HPC.NRW Competence Network

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

 Start-up, initialisation, finalization, and

shutdown – C

#include <mpi.h>

int main(int argc, char **argv)
{
// … some code …
MPI_Init(&argc, &argv);

// … computation & communication …

MPI_Finalize();
// … wrap-up …
return 0;

}

2 Pre-initialisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

• All program instances run exactly the same code

Post-finalisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

6

Inclusion of the MPI header file1

Initialisation of the MPI environment with implicit synchronisation3

Parallel MPI code4

Finalisation of the MPI environment5

5

4

6

3

2

1 C

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

 Start-up, initialisation, finalisation, and

shutdown – Fortran

PROGRAM example
USE mpi_f08 ! USE mpi

! … some code …
INTEGER :: ierr
CALL MPI_Init(ierr)

! … computation & communication …

CALL MPI_Finalize(ierr)

! … wrap-up …
END

2 Pre-initialisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

• All program instances run exactly the same code

Post-finalisation mode: uncoordinated

• No MPI function calls allowed with few exceptions

6

Using the MPI module1

Initialisation of the MPI environment with implicit synchronisation3

Parallel MPI code4

Finalisation of the MPI environment5

5

4

6

3

2

1 Fortran

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Library Initialization (classic MPI – no threads)

 Initialization:

 Initializes the MPI library and makes the process member of MPI_COMM_WORLD

 [C] Both arguments must be either NULL or they must point to the arguments of main()

 May not be called more than once for the duration of the program execution

 Error code as return value in [C] and additional parameter in [F]

 Finalization:

 Cleans up the MPI library and prepares the process for termination

 Must be called once before the process terminates

 Having other code after the finalisation call is not recommended

C: ierr = MPI_Init(&argc, &argv);
Fortran: CALL MPI_Init(ierr)

C: ierr = MPI_Finalize();
Fortran: CALL MPI_Finalize(ierr)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

General Structure of an MPI Program

 How many processes are there in total?

 Who am I?

#include <mpi.h>

int main(int argc, char **argv)
{
// … some code …
int ierr = MPI_Init(&argc, &argv);
int numberOfProcs, rank;
// … more code …
ierr = MPI_Comm_size(MPI_COMM_WORLD,

&numberOfProcs);
ierr = MPI_Comm_rank(MPI_COMM_WORLD,

&rank);
// … computation & communication …
ierr = MPI_Finalize();
// … wrap-up …
return 0;

}

C

2

1

2 Obtains the identity of the calling process within the MPI program

NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives

the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then

numberOfProcs will be set to 4 by the call

MPI in Small Bites INNOVATION THROUGH COOPERATION.

General Structure of an MPI Program

 How many processes are there in total?

 Who am I? PROGRAM example
USE mpi_f08 ! USE mpi
INTEGER :: rank, numberOfProcs, ierr

! … some code …
CALL MPI_Init(ierr)

! … other code …
CALL MPI_Comm_size(MPI_COMM_WORLD,&

numberOfProcs, ierr)
CALL MPI_Comm_rank(MPI_COMM_WORLD,&

rank, ierr)
! … computation & communication …
CALL MPI_Finalize(ierr)

! … wrap-up …
END PROGRAM example

Fortran

2

1

2 Obtains the identity of the calling process within the MPI program

NB: MPI processes are numbered starting from 0

Example: if there are 4 processes in the job, then rank receives

the value of 0 in the first process, 1 in the second process, etc.

1 Obtains the number of processes (ranks) in the MPI program

Example: if the job was started with 4 processes, then

numberOfProcs will be set to 4 by the call

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Ranks

 The processes in any MPI program are initially indistinguishable

 MPI assigns each process a unique identity (rank) in a communication context

(communicator)

?

?

?

?

??

?

?

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Ranks

 The processes in any MPI program are initially indistinguishable

 MPI assigns each process a unique identity (rank) in a communication context

(communicator)

MPI communicator

1

2

7

4

06

5

3

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Ranks

 The processes in any MPI program are initially indistinguishable

 MPI assigns each process a unique identity (rank) in a communication context

(communicator)

 Ranks

 Range from 0 to n-1 (with n processes in the communicator)

 An MPI process can have different ranks in different communicators

 Communicators

 Logical contexts where communication takes place

 Comprises a group of MPI processes with some additional information

 MPI_COMM_WORLD is implicitly available

 Comprises all processes initially started with the MPI program

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers

 Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data

 Whom to send data to / From whom to receive the data?

 How much data?

 What kind of data?

 Has the data arrived?

3. Provide synchronisation mechanisms

 Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes

 How do we start multiple processes and get them to work together?

5. Portability

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Compiling MPI Programs

 MPI is a typical library with C header files, Fortran modules, etc.

 Most MPI vendors provide convenience compiler wrappers (names are not standardized!)

 On the RWTH Aachen Compute Cluster:

$MPICXX$CXX

$MPIFC$FC

$MPICC$CC

mpic++c++

mpif90f90

mpicccc

Specific compilers

called automatically

change depending on

the module loaded.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Example: MPI Compiler Wrappers

 RWTH Aachen Cluster defines additional environment variables to minimize confusion

cluster:~[1]$ $MPICC --show # instruct wrapper to show compile line
icc \
-I/opt/MPI/openmpi-4.0.3/linux/intel_19.0.1.144/include \
-pthread \
-Wl,-rpath \
-Wl,/opt/MPI/openmpi-4.0.3/linux/intel_19.0.1.144/lib \
-Wl,--enable-new-dtags \
-L/opt/MPI/openmpi-4.0.3/linux/intel_19.0.1.144/lib \
-lmpi
cluster:~[1]$ echo $MPICC # check compiler wrapper name
mpicc
cluster:~[1]$ module switch openmpi intelmpi # switch MPI implementation
cluster:~[1]$ echo $MPICC # check compiler wrapper name again
mpiicc

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Executing MPI Programs

 Most MPI implementations provide a special launcher program:

 Launches nprocs instances of program with command-line arguments arg1, arg2, …

 The standard specifies the mpiexec program, but does not require it:

 IBM BG/Q: runjob --np 1024 …

 SLURM resource manager: srun …

mpiexec –n nprocs … program <arg1> <arg2> <arg3> …

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Executing MPI Programs

 The launcher often performs more than simply launching processes:

 Helps MPI processes find each other and establish the world communicator

 Redirects the standard output of all ranks to the terminal

 Redirects the terminal input to the standard input of rank 0

 Forwards received signals (Unix-specific)

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI as an SPMD Environment

1. Provide dynamic identification of all peers

 Who am I and who else is also working on this problem?

2. Provide robust mechanisms to exchange data

 Whom to send data to / From whom to receive the data?

 How much data?

 What kind of data?

 Has the data arrived?

3. Provide synchronisation mechanisms

 Have all processes reached same point in the program execution flow?

4. Provide methods to launch and control a set of processes

 How do we start multiple processes and get them to work together?

5. Portability

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Error handling

 Error codes indicate the success of the operation:

 Failure is indicated by error codes other than MPI_SUCCESS

 An MPI error handler is called first before the call returns

 The default error handler for non-I/O calls aborts the entire MPI program!

 Error checking in simple programs is redundant

 Actual MPI error code values are implementation specific

 Use MPI_Error_string to derive human readable information

if (MPI_SUCCESS != MPI_Init(&argc, &argv))
…

CALL MPI_Init(ierr)
IF (ierr /= MPI_SUCCESS) …

FortranC

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Handles to Opaque Objects

 MPI objects (e.g., communicators) are referenced via handles

 Process-local values

 Cannot be passed from one process to another

 Objects referenced by handles are opaque

 Structure is implementation dependent

 Blackbox for the user

 C (mpi.h)

 typedef’d handle types: MPI_Comm, MPI_Datatype, MPI_File, etc.

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Handles to Opaque Objects II

 Fortran (USE mpi)

 All handles are INTEGER values

 Easy to pass the wrong handle type

 Fortran 2008 (USE mpi_f08)

 Wrapped INTEGER values: TYPE(MPI_Comm), TYPE(MPI_File), etc.

 The INTEGER handle is still available: comm%MPI_VAL

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Datatype Handles

 MPI is a library

 Cannot infer datatypes of supplied buffers at runtime

 User needs to provide additional information on buffer type

 MPI datatype handles tell the MPI library how to:

 read binary values from the send buffer

 write binary values into the receive buffer

 correctly apply value alignments

 convert between machine representations in heterogeneous environments

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Datatype Handles II

 MPI datatypes are handles

 Cannot be used to declare variables of a specific language type

 sizeof(MPI_INT) provides the size of a datatype handle NOT the size of an int in C

 Type Signatures

 Sequence of basic datatypes in a buffer

 Basic datatypes correspond to native language datatypes

 Type Maps

 Sequence of basic datatypes AND their location in a buffer

 Type signatures of associated operations have to match; Type map may differ!

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Basic MPI Datatypes

 MPI provides predefined datatypes for each language binding:

MPI data type C data type

MPI_CHAR char

MPI_SHORT short

MPI_INT int

MPI_FLOAT float

MPI_DOUBLE double

MPI_UNSIGNED_INT unsigned int

… …

MPI_BYTE -

8 binary digits

no conversion

used for untyped data

MPI data type Fortran data type

MPI_INTEGER INTEGER

MPI_REAL

MPI_REAL8

REAL

REAL(KIND=8)

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

… …

MPI_BYTE -

MPI in Small Bites INNOVATION THROUGH COOPERATION.

Blocking vs. Non-blocking vs. Asynchronous

 Blocking procedures return when the associated operation is complete locally

 Any input argument can be safely reused or deallocated

 Operation may not be completed remotely

 Non-blocking procedures return before associated operation is complete locally

 One or more additional calls are needed to complete operation

 Input arguments may not be written or deallocated until operation is complete

 Synchronous operations complete locally only with specific remote intervention

 Asynchronous operations may complete locally without remote intervention

MPI in Small Bites INNOVATION THROUGH COOPERATION.

MPI Communication Paradigms

Point-to-Point

Communication

Collective

Communication

One-sided

Communication

